
ROBUST LEFT VENTRICLE SEGMENTATION FROM ULTRASOUND DATA US ING DEEP
NEURAL NETWORKS AND EFFICIENT SEARCH METHODS

Gustavo Carneiro∗, Jacinto Nascimento∗

Instituto de Sistemas e Robótica
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ABSTRACT

The automatic segmentation of the left ventricle of the heart
in ultrasound images has been a core research topic in medical
image analysis. Most of the solutions are based on low-level
segmentation methods, which uses a prior model of the ap-
pearance of the left ventricle, but imaging conditions violating
the assumptions present in the prior can damage their perfor-
mance. Recently, pattern recognition methods have become
more robust to imaging conditions by automatically building
an appearance model from training images, but they present
a few challenges, such as: the need of a large set of training
images, robustness to imaging conditions not present in the
training data, and complex search process. In this paper we
handle the second problem using the recently proposed deep
neural network and the third problem with efficient search-
ing algorithms. Quantitative comparisons show that the accu-
racy of our approach is higher than state-of-the-art methods.
The results also show that efficient search strategies reduce
ten times the run-time complexity.

Index Terms— Segmentation of the left ventricle of the
heart, deep neural networks, optimization algorithms

1. INTRODUCTION

The delineation of the left ventricle (LV) of the heart in ul-
trasound data is an important tool to produce a quantitative
assessment of the health of the heart. The automation of the
LV delineation (i.e., segmentation) is desirable in a clinical
setting due to the following reasons: 1) it can increase pa-
tient throughput; and 2) it can reduce inter-user variationin
the LV delineation procedure. However, automatic LV seg-
mentation systems have to handle several problems present in
ultrasound imaging, such as: low signal-to-noise ratio, edge
dropout and shadows. The solutions proposed so far can be
categorized into two classes: 1) low-level methods that use
prior models of the LV appearance, and 2) pattern recogni-
tion methods based on appearance models automatically built
from manually annotated LV images.

Low-level methods [1, 2, 3] consist of segmentation algo-
rithms that use a prior model of the LV based on the assump-
tions that the myocardium displays brighter, and the blood
pool in the LV displays darker than other structures in the
image. The main problem with this approach is that the vio-
lation of these assumptions may lead to incorrect segmenta-
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tions. Intensity independent features to get around this prior
model have also been proposed [4, 5, 6], but the such types of
model are unlikely to cover all possible imaging conditions
of the LV. Pattern recognition methods involve the use of a
database of annotated LV images (i.e., a training set) to au-
tomatically build a model of the LV appearance [7, 8]. Even
though this approach currently holds the most competitive re-
sults [9], it still faces a few challenges, such as: the need of
a large training set, robustness to imaging conditions unseen
in the training set, and the run-time complexity of the search
process. Lately, there has been a significant effort to reduce
the search complexity. For instance, the marginal space learn-
ing (MSL) [10], which partitions the search space into sub-
spaces of increasing complexity, achieves a significant com-
plexity reduction, but the search methods proposed by our pa-
per are orthogonal to it, meaning that our search methods can
be easily integrated into MSL. Another contribution [11] was
a pattern recognition approach that, given any position in the
search space, the method outputs a gradient vector that opti-
mizes the LV segmentation function. This approach is likely
to work as long as the searching region is sufficiently close
to a local optimum of the objective function. In addition, the
training procedure is likely to need a larger training set due
to the much higher number of parameters to be learned in the
gradient vector.

In this paper, we address two of the problems present in
pattern recognition methods, namely: 1) robustness to imag-
ing conditions unseen in training data, and 2) run-time com-
plexity of the search process. In order to handle the robust-
ness to imaging conditions, we move away from the use of
boosting classifiers [8], and rely on the use of deep neural
network classifiers [12] along with robust decision processes
(instead of maximum a posteriori [8]). The main advantage
of deep neural networks is its ability to produce more abstract
feature spaces for classification and to automatically gener-
ate optimum feature spaces directly from image data. In or-
der to tackle the complexity issue, we study the use of op-
timization algorithms of first and second orders [13]. The
main difference compared to the work by Zhou and Comani-
ciu [11] is that we compute the gradient vector and Hessian
matrix directly from the output of the classifiers, imposingno
additional requirements for the training set. We show quan-
titative comparisons between our method and state-of-the-art
approaches [7, 8, 9], and the results not only show a superior
performance of our approach, but they also display that ef-
ficient search methods maintain the original accuracy of the
method while reducing ten times the run-time complexity.



Fig. 1. Original training image (left) and the manual LV delineation
(center) with the rectangular patch representing the canonical coor-
dinate system for the delineation points (markers). The right image
shows the patch (extracted from the canonical coordinate system)
used to train the rigid classifier.

2. SEGMENTATION OF THE LEFT VENTRICLE

The problem we wish to solve is to automatically produce
the LV segmentation, represented by a set of pointsS =
{si}i=1..N , with si ∈ ℜ2, given an ultrasound imageI. We
assume the existence of a training setD = {(I, θ,S)i}i=1..M ,
with LV imagesIi, the respective manual annotationSi and
the parameters of a rigid transformationθi ∈ ℜ5 (position
x ∈ ℜ2, orientationγ ∈ [−π, π], and scaleσ ∈ ℜ2) that
aligns rigidly the annotation points to a canonical coordinate
system (see Fig.1). Our objective is to find the LV contour
with the following decision function:

S∗ = E [S|I, y = 1,D] =

∫

S

Sp(S|I, y = 1,D)dS, (1)

wherey = 1 is a random variable indicating the presence
of LV in image I. Notice that the common goal in pattern
recognition methods is to find the parameterS maximizing
the probability functionp(S|I, y = 1,D), but the use of ex-
pectationE[.] in (1) provided a more robust decision process.
Eq. 1 can be expanded using

p(S|I, y = 1,D) =

∫

θ

p(S|θ, I, y = 1,D)p(θ|I, y = 1,D)dθ.

(2)
The first right-hand side (RHS) term in (2), representing the
non-rigid part of the detection, is defined as follows:

p(S|θ, I, y = 1,D) =
∏

i

p(si|θ, I, y = 1,D), (3)

wherep(si|θ, I, y = 1,D) represents the probability that the
pointsi is located at the LV contour. Assuming thatψ denotes
the parameter vector of the classifier for the non-rigid contour,
we compute

p(si|θ, I, y = 1,D) =

∫

ψ

p(si|θ, I, y = 1,D, ψ)p(ψ|D)dψ.

(4)
In practice, we run a maximum a posteriori learning pro-
cedure of the classifier parameters, which producesψMAP,
meaning that in the integral (4) we havep(ψ|D) = δ(ψ −
ψMAP), whereδ(.) denotes the Dirac delta function. Also,
instead of computing the probabilityp(si|θ, I, y = 1,D),
we train a regressor that indicates the most likely edge lo-
cation (see Fig.2); this roughly means thatp(si|θ, I, y =
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Fig. 2. Intensity value profiles (from inside to outside the LV) of
the lines drawn perpendicularly to annotation points.

1,D) = δ(si − s
r
i (θ, I, y = 1,D)), with s

r
i (.) being the re-

gressor result for theith contour point, so Eq. 2 is effectively
∫

θ
Sr(θ, I, y = 1,D)p(θ|I, y = 1,D)dθ.
The second RHS term in (2) represents the rigid detection,

which is denoted as

p(θ|I, y = 1,D) = Zp(y = 1|θ, I,D)p(θ|I,D) (5)

whereZ is a normalization constant,p(θ|I,D) is a prior on
the parameter space, and

p(y = 1|θ, I,D) =

∫

γ

p(y = 1|θ, I,D, γ)p(γ|D)dγ, (6)

with γ being the vector of classifier parameters, which are
estimated through a maximum a posteriori learning proce-
dure, producingγMAP. This means that in (6)p(γ|D) =
δ(γ − γMAP).

2.1. Deep Neural Network

The effective use of large-scale conventional neural net-
work classifiers (with several hidden layers and thousands
of nodes) is limited because backpropagation [14] (algo-
rithm to estimate the classifier parameters) converges only
when the initial guess for the parameter values are close
to a local optimum of the optimization function. Hinton et
al. [12] found a way to provide such initial guesses through
unsupervised training of multiple layers of restricted Boltz-
mann machines (RBM), which are represented by a hid-
den and a visible layer of stochastic binary units with con-
nections only between layers (i.e., no connections within
layers). After the parameters of several layers of RBMs
were learned, the whole network is trained using back-
propagation to adjust the weights to a local maximum for
the regressor and classifier functions. For the regressor
in (4), we find the solution for the maximization function
ψMAP = arg maxψ p({Si}i=1..N |{(I, θ)i}i=1..N , ψ), where
(I, θ,S)i ∈ D. For the classifier (6), we find the solution for
γMAP = argmaxγ p(y = 1|{(I, θ)i}i=1..N , γ).

2.2. Efficient Search Methods

For the of detection of the LV in (1), there is a five dimen-
sional space for the rigid detection andN dimensions for the
non-rigid search space, resulting in a search space ofK5+N

samples, which is too high for most of practical values of



Fig. 3. Subset of learned features for classifier atσ = 4.

K ∈ [102, 103] andN ∈ {10, ..., 25}. Running the search
procedure on the image pyramid, with one classifier per im-
age scale, reduces the search space significantly. The advan-
tage here is to reduce the number of samples in the coars-
est scale toKcoarse, and move to finer scales only the best
Kfine ∈ [10, 30] candidates. Note that the search procedure
in fine scales needs to happen only around the current search
point, meaning35 (3 points in 5 dimensions) samples for each
of theKfine positions. Moreover, performing the non-rigid
search only after the rigid search is done means a total search
space ofK5

coarse+ (#scales− 1) ×Kfine × 35 +N ×Kfine.
Our first contribution to reduce the search space is to as-

sume a prior distribution on the coarse search space, and sam-
ple Kcoarse times from this distribution (Monte-Carlo sam-
pling), which means a search space ofKcoarse+ (#scales−
1) × Kfine × 35 + N × Kfine. Our second contribution is
the implementation of efficient search procedures in order to
reduce the exhaustive search of35 points around the hypothe-
ses. We propose two methods that are widely used in opti-
mization algorithms, which are: gradient descent and New-
ton step [13]. These methods work for convex functions, and
their use in non-convex functions, such as the ones produced
by the deep neural net classifiers, only works with a suffi-
ciently large number ofKcoarse. In gradient descent,∇p(y =
1|θ, I,D, γMAP ) is computed numerically using central dif-
ference, representing a computation of the classifier in 10
points of the search space (five parameters times two points)
plus the line search in 10 points. By limiting the number
of iterations between one and five for each hypothesis, the
search space is then reduced to 20 to 100 points, which is
smaller than35 = 243. In theory, a faster convergence can
be achieved with the Newton step, but the computation of
the Hessian matrix, gradient and line search involves 25+10
search space points. Limiting the number of iterations be-
tween one and five means that the complexity of this step for
one hypothesis is between 35 to 175, which is also smaller
than35 = 243.

2.3. Training and Detection Procedures

For the training procedure, we use a set of 400 ultrasound
images (from 12 sequences) of left ventricles annotated by
experts. For the rigid classifier, we build an image scale space
L(x, σ) = G(x, σ) ∗ I(x), whereG(x, σ) is the Gaussian
kernel,∗ is the convolution operator,I(x) is the input image,
σ is the image scale parameter, andx is the image coordi-
nate. We train three separate classifiers (6); one for each scale
σ = {4, 8, 16}. The positive and negative training sets are
defined based on a scale-dependent marginmσ that increases
by a factor of two after each octave. Positives forL(x, σ) are
randomly generatedinsidethe range[θ −mσ/2, θ +mσ/2],
and negatives are randomly generatedoutsidethe range[θ −
mσ, θ+mσ], whereθ is the parameter vector representing the
rigid transformation of the LV annotation. Notice in Fig. 3

Fig. 4. Example of the first (top row) and second (bottom row) test
sequences. The yellow, solid line displays the manual annotation,
while the magenta dashed line shows the results from our system.

that the type of features automatically learned from the this
training process resembles wavelets. The non-rigid regres-
sor is trained atσ = 4, where each training sample is a line
of 41 pixels of length extracted perpendicularly from the LV
contour points (see Fig. 2) and the label to learn is the pixel
index in{1, ..., 41} that is closest to the LV contour. Running
a cross-validation procedure with 200 images for training and
200 images for validation, the following parameters were es-
timated: 1) number of nodes per layer of regressor network:
41 (visible), 50 (hidden 1), 50 (hidden 2), 250 (hidden 3), 1
(output); 2) number of nodes per layer of the classifier net-
works: 16, 49, 196 (visible layers atσ = {16, 8, 4}, respec-
tively), 50 (hidden 1), 50 (hidden 2), 100 (hidden 3), 2 (out-
put); 3) the prior distributionp(θ|I,D) used in (5): uniform;
4)Kcoarse= 103 andKfine = 10.

The detection procedure consists of running the rigid clas-
sifier at scaleσ = 16 on theKcoarseinitial hypotheses. From
this detection, cluster the hypotheses (using k-means algo-
rithm) and select the topKfine clusters in terms of the best
hypothesis within each cluster. Then run the rigid classifier
at scaleσ = 8 on these hypotheses and repeat the procedure
for scaleσ = 4. Finally, run the model represented by (2)
over the final topKfine hypotheses. Note that we substitute
the integral in (1) for an average over the top hypotheses.

3. EXPERIMENTS

We use the following three metrics to compare the output
of the detector with the reference contours, namely [9]: the
Hausdorff distance, the average distance, and the Hammoude
distance [15]. Assuming thatX = {xi}i=1..N is the automat-
ically estimated contour from a system andS = {si}i=1..N

is the manual delineation, we first define the smallest point to
curve distance asd(xi,S) = minj ‖sj − xi‖2. The average
distance between two curves is defined by:

davg(X ,S) =
1

N

∑

i

d(xi,S), (7)



Table 1. Comparisons in the sequences (Fig. 4).
Sequence One

Approach Hamm. (9) Aver. (7) Hausd. (8)
Full 0.1847 3.2891 20.0894
GradDes 0.2060 3.6472 19.2007
Newton 0.1991 3.5580 18.6611
MMDA[9] 0.2472 4.8457 22.4766
COM[7, 8] 0.2083 3.8947 20.4781

Sequence Two
Approach Hamm. (9) Aver. (7) Hausd. (8)
Full 0.1777 3.0829 19.8815
GradDes 0.1661 2.9936 19.5589
Newton 0.2158 3.6345 21.1893
MMDA[9] 0.2431 4.8748 20.2606
COM[7, 8] 0.1865 3.3719 17.2148

and the Hausdorff distance is defined as follows [16]:

dmax(X ,S) = max

(

max
i

{d(xi,S)},max
j

{d(sj ,X )}

)

.

(8)
Finally, the Hammoude distance [15] is defined by:

dH(X ,S) =
#((RX ∪RY) − (RX ∩RY))

#(RX ∪RY)
, (9)

whereRX represents the image region delimited by the con-
tourX , and similarly forRS .

The performance of the tracker was measured by compar-
ing the contour estimates with reference contours provided
by a cardiologist of Fernando Fonseca Hospital (Amadora,
Portugal). Note that these images were not included in the
400 images of the training set. The cardiologist segmented
80 images: 40 images from two sequences (see Fig. 4). For
the comparison, we present the results obtained with state-
of-the-art trackers for the left ventricle recently proposed by
Comaniciu et al. [7, 8] and by Nascimento [9], applied on the
same data. Table 3 shows the comparisons for the two se-
quences with the results of our approach in rows “Full” (orig-
inal search), “GradDes” (gradient descent), and “Newton”
(Newton step). The rows “MMDA” and “COM” show the
respective results by Nascimento [9] and Comaniciu [7, 8].
In this table the best value for each measure and sequence is
highlighted.

In terms of run-time complexity, the number of floating
point multiplications for the classifier atσ = 16 isO(8×106),
atσ = 8 isO(2.5 × 107), atσ = 4 isO(9.8 × 107), and the
regressor isO(2.6 × 107). Given these numbers, the “Full”
search average complexity isO(3.5×1011), while the average
complexity for “GradDes” isO(2 × 1010) and for “Newton”
isO(3 × 1010).

4. CONCLUSION AND FUTURE WORK

The pattern recognition approach for LV segmentation in ul-
trasound data presented in this paper shows evidence of ro-
bustness to imaging conditions absent in training data. Also,

efficient search approaches reduce the run-time complexity
without affecting the accuracy of the method. Quantitative
comparisons against state-of-the-art systems show the supe-
riority of our method in publicly available datasets. We are
now studying the introduction of multiple models (e.g., dias-
tole and systole) to improve even more the robustness of the
approach. Furthermore, we also plan to introduce a dynamic
model to speed up the search process and get around low con-
fidence detections.
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